Consider given the given integration,
Let,
y=1√3x+7−1√7−3x
Differentiate with respect to x,
ddxy=ddx1√3x+7−ddx1√7−3x
dydx=−12(3x+7)32.ddx(3x+7)−(−1)2(7−3x)32.ddx(7−3x)
dydx=−32(3x+7)32−32(7−3x)32
Hence, this is the answer.