wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the following function with respect to x.

x2cosπ4sinx.

Open in App
Solution

Let y=x2cosπ4sinx

Now, differentiate w.r.t. x

dydx=ddx⎜ ⎜x2cosπ4sinx⎟ ⎟

=12ddx(x2cosecx)

We know, d(u .v)dx=vdudx+udvdx

dydx=12{cosecxddx(x2)+x2ddx(cosecx)}

dydx=12(2xcosecxx2cosecxcotx).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon