wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the following functions from first principles:

ecos x

Open in App
Solution

Let fx=ecosx fx+h=ecosx+h ddxfx=limh0fx+h-fxh =limh0ecosx+h-ecosxh =limh0 ecosxecosx+h-cosx-1h =limh0 ecosxecosx+h-cosx-1cosx+h cosx×cosx+h-cosxh =ecosxlim h0 cosx+h-cosxh ×limh0ecosx+h-cosx-1cosx+h-cosx =ecosxlimh0 cosx+h-cosxh limh0ex-1x=1 =ecosxlimh0 -2sinx+h+x2sinx+h-x2h cosA-cosB=-2sin A+B2sinA-B2 =ecosxlimh0-sin2x+h21×sinh2h2 =ecosxlimh0-sin2x+h21× lim h0sinh2h2 =ecosxlimh0-sin2x+h2 sinxx=1 =ecosx-sinx =-sinxecosxHence, ddxecosx=-sinxecosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon