Differentiate the following functions with respect to x
2√cot(x2)
Let y = 2√cot(x2)
Differentiate both sides w.r.t. X,
dydx=ddx2(cont x2)1/2=2.12{cot(x2)}12−1ddxcot (x2)
[Using chain rule ddxf(g(x))=f′(x)ddxg(x)]
= 1√cot(x2)[−cosec2x2]ddx(x2)
= −cosec2(x2)2x√cot(x2)=−2x cosec2(x2)√cot(x2)