Differentiate the following functions with respect to x :
1ax2+bx+c
Using quotient rule, we have
ddx(1ax2+bx+c)
=(ax2+bx+c)ddx(1)−1×ddx(ax2+bx+c)(ax2+bx+c)2=−2(ax+b)(ax2+bx+c)2
∴ ddx1ax2+bx+c=−(2ax+b)(ax2+bx+c)
ax2+bx+cpx2+qx+r
(2x−1x2+1)
x2+1x+1
sec x−1sec x+1