Differentiate the following functions with respect to x :
1ax2+bx+c
Let y=1ax2+bx+c
Differentiating y w.r.t. x, we get
dydx=(ax2+bx+c)ddx(1)−1×ddx(ax2+bx+c)(ax2+bx+c)2 (By quotient formula)
=(ax2+bx+c)×0−1×(2ax+b)(ax2+bx+c)2
⇒ dydx=−(2ax+b)(ax2+bx+c)2