Differentiate the following functions with respect to x :
10xsin x
Let, y=10xsin x
⇒dydx=ddx(10xsin x)
Quotient rule: ddx(UV)=VdUdx−UdVdxV2
⇒dydx=(sin x)ddx(10x)−(10x)ddx(sin x)(sin x)2
⇒dydx=sin x×10xlog 10−10xcos x(sin x)2
⇒dydx=sin x×10xlog 10(sin x)2−10xcos x(sin x)2
⇒dydx=10xlog 10sin x−10xcos xsin x×sinx
⇒dydx=10xcosec~x log 10−10x cosec x cot x
⇒dydx=10xcosec x(log 10−cot x)
∴ddx(10xsin x)=10xcosec x(log 10−cot x)