Differentiate the following functions with respect to x :
2xcot x√x
We have,
ddx(2xcot x√x)
Using quotient rule, we get
√xddx(2x cot x)−(2xcot x)ddx(√x)(√x)2
=√x(2xddxcot+cot xddx2x)−2xcot x×12x−12(√x)2
=√x(2x−cosec2x+cot x×log2×2x)−2xcot x×12√x(√x)2
=2x(−x cosec2x+x cot x×log x−(12cot x))(√x)2×√x=2x(−x cosec2x+x cot x×log 2−(12)cot x)x32