Differentiate the following functions with respect to x :
a+b sin xc+d cos x
Let y = a+b sin xc+d cos x
Differentiating y w.r.t., we get
dydx=(c+d cos x)ddx(a+b sin x)−(a+b sin x)ddx(c+d cos x)(c+d cos x)2
=(c+d cos x)[0+b cos x]−(a+b sin x)(0−d sin x)(c+d cos x)2
=(c+d cos x)(b cos x)−(a+b sin x)(−d sin x)(c+d cos x)2
=bc cos x+bd cos2x+ad sin x+bd sin2x(c+d cos x)2
=bc cos x+ad sin x+bd(cos2x+sin2x)(c+d cos x)2
⇒ dydx=bc cos x+ad sin x+bd(c+d cos x)2