Differentiate the following functions with respect to x :
ax2+bx+cpx2+qx+r
ddx(ax2+bx+cpx2+qx+r)
=(px2+qx+r)ddx(ax2+bx+c)−(ax2+bx+c)ddx(px2+qx+r)(px2+qx+r)2
=(px2+qx+r)(2ax+b)−(ax2+bx+c)(2px+q)(px2+qx+r)2
=2apx3+2aqx2+2axr+bpx2+bqx+br−(2apx3+2pbx2+2pcx+qax2+bqx+cq)(px2+qx+r)2
=2apx3−2apx2+2aqx2+bpx2−2qax2+2arx+bqx−2pcx−bqx+br−cq(px2+qx+r)2
=aqx2−bpx2+2arx−2cpx+br−cq(px2+qx+r)2=x2(aq−bp)+2(ar−cp)x+br−cq(px2+qx+r)2
=(aq−bp)x2+2(ar−cp)x+br−cq(px2+qx+r)2