wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the following functions with respect to x :

px2+qx+rax+b

Open in App
Solution

Let y = px2+qx+rax+b

Differentiating y w.r.t. x, we get

dydx=(ax+b)ddx(px2+qx+r)(px2+qx+r)ddx(ax+b)(ax+b)2 (By quotient formula)

(ax+b)(2px+q+0)(px2+qx+r)(a×1+0)(ax+b)2

=(ax+b)(2px+q)(px2+qx+r)a(ax+b)2

=(2apx2+apx+2bpx+bq)(apx2+aqx+ra)(ax+b)2=2apx2+aqx+2bpx+bqapx2apxra(ax+b)2

dydx=apx2+2bpx+bqra(ax+b)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon