Differentiate the following functions with respect to x
sin (ax+b)cos (cx+d)
Ley y = sin (ax+b)cos (cx+d)
Differentiate both sides w.r.t. x, we get
dydx=ddx(sin (ax+b)cos (cx+d))
= cos(cx+d)ddx{sin(ax+b)}−sin(ax+b)ddx{cos(cx+d)}{cos(cx+d)}2
= cos (cx+d)cos (ax+b).(a+0)+sin (ax+b)sin (cx+d)(c+0)cos2(cx+d)
⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣Chain rule−ddxsin(ax+b)=cos(ax+b)ddx(ax+b)=cos(ax+b)×(a×1+0) ddxcos(cx+d)=−sin(cx+d)ddx(cx+d)=−sin(cx+d)×(c×1+0)⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
=a cos (cx+d)cos (ax+b)+c sin (ax+b)sin (cx+d)cos2(cx+d)
= a cos (cx+d)cos (ax+b)cos2(cx+d)+c sin (ax+b)sin (cx+d)cos2(cx+d)
= a cos (ax+b)cos (cx+d)+c sin (ax+b) sin (cx+d)cos (cx+d) cos (cx+d)
=a cos(ax+b) sec(cx+d)+c sin(ax+b) tan(cx+d) sec(cx+d)