wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the following functions with respect to x

sin (ax+b)cos (cx+d)

Open in App
Solution

Ley y = sin (ax+b)cos (cx+d)

Differentiate both sides w.r.t. x, we get

dydx=ddx(sin (ax+b)cos (cx+d))

= cos(cx+d)ddx{sin(ax+b)}sin(ax+b)ddx{cos(cx+d)}{cos(cx+d)}2

= cos (cx+d)cos (ax+b).(a+0)+sin (ax+b)sin (cx+d)(c+0)cos2(cx+d)

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢Chain ruleddxsin(ax+b)=cos(ax+b)ddx(ax+b)=cos(ax+b)×(a×1+0) ddxcos(cx+d)=sin(cx+d)ddx(cx+d)=sin(cx+d)×(c×1+0)⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=a cos (cx+d)cos (ax+b)+c sin (ax+b)sin (cx+d)cos2(cx+d)

= a cos (cx+d)cos (ax+b)cos2(cx+d)+c sin (ax+b)sin (cx+d)cos2(cx+d)

= a cos (ax+b)cos (cx+d)+c sin (ax+b) sin (cx+d)cos (cx+d) cos (cx+d)

=a cos(ax+b) sec(cx+d)+c sin(ax+b) tan(cx+d) sec(cx+d)


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon