Differentiate the following functions with respect to x :
x2−x+1x2+x+1
We have,
ddx(x2−x+1x2+x+1)
Using quotient rule,
(x2+x+1)ddx(x2−x+1)−(x2−x−1)ddx(x2+x+1)(x2+x+1)2
=(x2+x+1)(2x−1)−(x2−x+1)(2x+1)(x2+x+1)
=(x2+1−x)(2x−1)−(x2−x+1)(2x+1)(x2+x+1)2
=2x3+2x+2x2−x2−1−x−2x3+2x2−2x−x2+x−1(x2+x+1)2
=2x2−2(x2+x+1)2=2(x2−1)(x2+x+1)2