Differentiate the following functions with respect to x :
x+cos xtan x
Let u=x+cos x,v=tan x
Then u′=1−sin x,v′=sec2x
Using the quotient rule
dydx(uv)=vu′−uv′v2
ddx(x+cos xtan x)=tan x(1−sin x)−(x+cos x)sec2xtan2x
x1+tan x
ex−tan xcot x−xn
x tan xsec x+tan x
3xx+tan x
cos(x+a)