Differentiate the following functions with respect to x :
x sin x1+cos x
We have,
ddx(x sin x1+cos x)
Using quotient rule, we get
=(1+cos x)ddx(x sin x)−(x sin x)ddx(1+cos x)(1+cos x)2
=(1+cos x)(xddxsin x+sin xddx)−x sin x−(−sin x)(1+cos x)2
=(1+cos x)(x cos x+sin x)+x sin2x(1+cos x)2
=x cos x+x cos2x+sin x+sin x cos x+x sin2x(1+cos x)2
=(x cos x+sin x+sin x cos x)+x(sin2x+cos2x)(1+cos x)2=sin x+sin cos x+x(cos x+sin2x+cos2x)(1+cos x)2
=sin x(1+cos x)+x(cos x+1)(1+cos x)2=(x+sin x)(cos x+1)(1+cos x)2