Differentiate the following functions with respect to x :
x tan xsec x+tan x
We have,
ddx(x tan xsec x+tan x)
Using quotient rule, we get
=(sec x+tan x)ddx(x tan x)−(x tan x)ddx(sec x+tan x)(sec x+tan x)2 =(sec x+tan x)(x sec2x+tan x)−(x tan x)(sec xtan x+sec2x)(sec x+tan x)2 [Using product rule]
=(sec x+tan x)(x sec2x+tan x)−x sec x+tan2x−x tan x sec2x(sec x+tan x)2
=(sec x+tan x)(x sec2x+tan x)−x tan x(sec x tan x+sec2x)(sec x+tan x)2
=(sec x+tan x)(x sec2x+tan x)−x tan xsec x(sec x+tan x)(sec x+tan x)2
=(sec2x+tan x−x tan xsec x)(sec x+tan x)(sec x+tan x)2
=(xsec2+tan x−xtan xsec x)sec x+tan x=x sec(sec x−tan x)+tan x(sec x+tan x)