Differentiate the following functions with respect to x :
(2x−1x2+1)
Using quotient rule, we have
ddx(2x−1x2+1)
=(x2+1)ddx(2x−1)−(2x−1)ddx(x2+1)(x2+1)2
=(x2+1)×2−(2x−1)×2x(x2+1)2=2x2−4x2+2x(x2+1)2
=−2x2+2x+2(x2+1)2
=2(−x2+x+1)(x2+1)2=2(1+x−x2)(1+x2)2