We have,
ddx((x sin x+cos x)(ex+x2 log x))
We will apply product rule,
=(ex+x2 log x)ddx(x sin x+cos x)+(x sin x+cos x)ddx(ex+x2 log x)
=(ex+x2 log x)(ddx(x sin x)+ddxcos x)+(x sin x+cos x)×{ddx(e′)+ddx(x2 log x)}
Again apply product rule,
=(ex+x2 log x)(sin xddx(x)+xddx(sin x))−sin x+(x sin x+cos x){ex+(log xddx(x2+x2ddx(log x)))}
=(ex+x2 log x)(sin x+x cos x−sin x)+(x sin x+cos x)(ex+log x×2x+x21x)
=(ex+x2) log x)×cos x+(x sin x+cos x)(ex+2x×log x+x)
=x cos xex+e3 cos x+(x sin x+cos x)(ex+2x×log x+x)
=x cos x ex+e3 cos x log x+x ex sin x+ex cosx+2x2 sin x×log x+2x cos x log x+x2 sin x+x cos x
=x cos x(ex+x2 logx)+(x sin x+cos x)(ex+x+2x log x)