Differentiate the following questions w.r.t. x.
esin−1x.
Let y =esin−1x
Differentiate both sides w.r.t. x, we get
⇒ dydx=ddx(esin−1x)=esin−1xddxsin−1x
(Using chain rule ddxeax=eaxddx(ax))
= esin−1x1√1−x2=esin−1x√1−x2,xϵ(−1, 1)
[∵1√1−x2is defined for xϵ(−1, 1)]