Differentiate the following questions w.r.t. x.
ex+ex2+.......+ex5
Let y = ex+ex2+.......+ex5
Differentiate both sides w.r.t. x, we get
ddxy=ddx{ex+ex2+ex3+ex4+ex5}=ddx(ex)+ddx(ex2)+ddx(ex3)+dvdx(ex4)+ddx(ex5)=ex+ex2ddx(x2)+ex3ddx(x3)+ex4ddx+ex5ddx(x5) (Using chain rule)=ex+ex2(2x)+ex3(3x2)+ex4(4x3)+ex5(5x4)=ex+2xex2+3x2ex3+4x3ex4+5x4ex5