Differentiate the following questions w.r.t. x.
cos xlog x, x>0.
Let y = cos xlog x
Differentiate both sides w.r.t. x,
⇒ dydx=ddx(cos xlog x),x>0⇒ dydx=(log x)dydx(cos x)−cos xddx(log x)(log x)2 (∵ ddx(uv)=vddx(u)−uddx(v)v2)⇒ dydx=(log x)(−sin x)−(cos x)1x(log x)2⇒dydx=−xsin x log x+cos xx(log x)2,x>0