Given that,
f(x)=x4logax
On differentiating w.r.t x, we get
f′(x)=ddx(x4logax)
Since, ddx(uv)=vd(u)dx−ud(v)dxv2
Therefore,
f′(x)=logax(4x3)−x4(1xlogea)(logax)2
f′(x)=4x3logax−(x3logea)(logax)2
f′(x)=4x3logax(logax)2−x3logea(logax)2
f′(x)=4x3(logax)−x3logea(logax)2
f′(x)=4x3(logax)−x3logea(logexlogea)2
f′(x)=4x3(logax)−x3logea(logex)2
Hence, this is the answer.