wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function cosx.cos2x.cos3x w.r.t. x.

Open in App
Solution

Simplification of given data

Let y=cosx.cos2x.cos3x

Taking log on both sides, we get

logy=log(cosx.cos2x.cos3x)

logy=logcosx+logcos2x+logcos3x

(logab=loga+logb)

Differentiating both sides w.r.t.x, we get,

d(logy)dx=d(log(cosx)+log(cos2x)+log(cos3x))dx

Multiplying and dividing by dy

d(logy)dy.dydx=d(log(cosx))dx+d(log(cos2x))dx+d(log(cos3x))dx

(using chain rule dydx=dydu×dudx)

d(logy)dy.dydx=1cosx.d(cosx)dx+1cos2x.d(cos2x)dx+1cos3x.d(cos3x)dx

1y.dydx=1cosx.(sinx)+1cos2x.(sin2x)+1cos3x.(sin3x).d(3x)dx

1y.dydx=sinxcosxsin2xcos2x.2sin3xcos3x.3

1y.dydx=(tanx+2tan2x+3tan3x)

dydx=y(tanx+2tan2x+3tan3x)

Substituing the value of

y=cosx.cos2x.cos3x, we get

dydx=cosx.cos2x.cos3x(tanx+2tan2x+3tan3x)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon