wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function cos1x22x+7,2<x<2 w.r.t.x.

Open in App
Solution

Let y=cos1x22x+7

Differentiating both sides w.r.t. x, we get

dydx=ddx⎜ ⎜cos1x22x+7⎟ ⎟

By quotient rule : (uv)=uvvuv2

dydx=d(cos1x2)dx.2x+7d(2x+7)dx.cos1x2(2x+7)2


dydx=2x+724x24cos1x222x+7.(2+0)(2x+7)2

dydx=2x+74x2cos1x22x+7(2x+7)

dydx=2x+72x+7cos1x24x2(2x+7)(2x+7)(4x2)

dydx=(2x+7)2(2x+7)(2x+7)(4x2)cos1x24x2(2x+7)(2x+7)(4x2)

dydx=12x+74x2cos1x2(2x+7)2x+7

dydx=12x+74x2cos1x2(2x+7)32.

flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon