Let y=cos−1x2√2x+7
Differentiating both sides w.r.t. x, we get
dydx=ddx⎛⎜
⎜⎝cos−1x2√2x+7⎞⎟
⎟⎠
By quotient rule : (uv)′=u′v−v′uv2
dydx=d(cos−1x2)dx.√2x+7−d(√2x+7)dx.cos−1x2(√2x+7)2
dydx=−√2x+72√4−x24−cos−1x22√2x+7.(2+0)(√2x+7)2
dydx=−√2x+7√4−x2−cos−1x2√2x+7(2x+7)
dydx=−√2x+7√2x+7−cos−1x2√4−x2(2x+7)(√2x+7)(√4−x2)
dydx=−(√2x+7)2(2x+7)(√2x+7)(√4−x2)−cos−1x2√4−x2(2x+7)(√2x+7)(√4−x2)
dydx=−1√2x+7√4−x2−cos−1x2(2x+7)√2x+7
dydx=−1√2x+7√4−x2−cos−1x2(2x+7)32.