Differentiate the function given below w.r.t. x:
(2x−7)2(3x+5)3
Given: (2x−7)2(3x+5)3
Differentiating with respect to x, we get
=ⅆⅆx[(2x−7)2(3x+5)3]
=(2x−7)2ⅆⅆx(3x+5)3
+(3x+5)3ⅆⅆx(2x−7)2
=(2x−7)2⋅3(3x+5)2(3)
+(3x+5)3⋅2(2x−7)(2)
=9(2x−7)2(3x+5)2+4(2x−7)(3x+5)3
[∵dxndx=nxn−1]
=(2x−7)(3x+5)2[9(2x−7)+4(3x+5)]
=(2x−7)(3x+5)2(30x−43)