Differentiate the function given below w.r.t. x:
(3x+5)(1+tanx)
Let y=(3x+5)(1+tanx)
dydx=ddx[(3x+5)(1+tanx)]
⇒dydx=(3x+5)ddx(1+tanx)
+(1+tanx)ddx(3x+5)
[∵d(u⋅v)dx=udvdx+vdudx]
⇒dydx=(3x+5)[d(1)dx+d(tanxdx]+
(1+tanx)[d(3x)dx+d(5)dx]
[∵d(f+g)dx=dfdx+dgdx]
⇒dydx=(3x+5)(0+sec2x)+(1+tanx)(3+0)
[d(tanxdx=sec2x,d(c)dx=0]
dydx=(3x+5)sec2x+3(1+tanx)