wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function given below w.r.t. x:

(3x+5)(1+tanx)


Open in App
Solution

Let y=(3x+5)(1+tanx)

dydx=ddx[(3x+5)(1+tanx)]

dydx=(3x+5)ddx(1+tanx)
+(1+tanx)ddx(3x+5)

[d(uv)dx=udvdx+vdudx]

dydx=(3x+5)[d(1)dx+d(tanxdx]+

(1+tanx)[d(3x)dx+d(5)dx]

[d(f+g)dx=dfdx+dgdx]

dydx=(3x+5)(0+sec2x)+(1+tanx)(3+0)

[d(tanxdx=sec2x,d(c)dx=0]

dydx=(3x+5)sec2x+3(1+tanx)


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon