Differentiate the function given below w.r.t. x:
1ax2+bx+c
Let y=1ax2+bx+c
Differentiating with respect to x,
dydx=(ax2+bx+c)d(1)dx−1d(ax2+bx+c)dx(ax2+bx+c)2
⎡⎢
⎢
⎢⎣quotient ruled(uv)dx=vdudx−udvdxv2⎤⎥
⎥
⎥⎦
⇒dydx=0.(ax2+bx+c)−1.(2ax+b)(ax2+bx+c)2
⇒dydx=−(2ax+b)(ax2+bx+c)2