Differentiate the function given below w.r.t. x:
3x+45x2−7x+9
Let y=3x+45x2−7x+9
⇒dydx=⎛⎜
⎜
⎜⎝(5x2−7x+9)d(3x+4)dx−(3x+4).ddx(5x2−7x+9)⎞⎟
⎟
⎟⎠(5x2−7x+9)2
⎡⎢
⎢
⎢⎣∵d(uv)dx=vdudx−udvdxv2⎤⎥
⎥
⎥⎦
⇒dydx=⎛⎜
⎜
⎜
⎜
⎜
⎜⎝(5x2−7x+9)[d(3x)dx+d(4)dx]−(3x+4)[d(5x2)dx−d(7x)dx+d(9)dx]⎞⎟
⎟
⎟
⎟
⎟
⎟⎠/(5x2−7x+9)2
[∵d(f+g)dx=dfdx+dgdx]
⇒dydx=((5x2−7x+9)×3−(3x+4)(10x−7))(5x2−7x+9)2
⇒dydx=(15x2−21x+27−30x2+21x−40x+28)(5x2−7x+9)2
⇒dydx=55−40x−15x2(5x2−7x+9)2