Differentiate the function given below w.r.t. x: (secx−1)(secx+1)
Let y=(secx−1)(secx+1) y=sec2x−1 [∵(a+b)(a−b)=a2−b2] y=tan2x Differentiate w.r.t. x ⇒dydx=2tanxd(tanx)dx (Chain rule) ⇒dydx=2tanx(sec2x) ⇒dydx=2sec2xtanx
Differentiate the function given below w.r.t. x: (2x−7)2(3x+5)3