wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function given below w.r.t. x:

sin3x.cos3x


Open in App
Solution

Let y=sin3xcos3x

Differentiating with respect to x, we get

dydx=cos3xddx(sin3x)+sin3xddx(cos3x)

dydx=cos3x(3sin2xcosx)

+sin3x(3cos2x(sinx))

dydx=3sin2x.cos4x3cos2x.sin4x

dydx=3sin2x.cos2x(cos2xsin2x)

divide and multiply by 4

dydx=34×4sin2x.cos2x.cos2x

(cos2θsin2θ=cos2θ)

dydx=34(2sinxcosx)2.cos2x

(sin2θ=2sinθ.cosθ)

dydx=34sin22x.cos2x


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon