Differentiate the function given below w.r.t. x:
(sinx+cosx)2
Let y=(sinx+cosx)2
Differentiating with respect to x, we get
dydx=ddx(sinx+cosx)2
=2(cosx+sinx)ddx(cosx+sinx)
=2(cosx+sinx)(−sinx+cosx)
=2(cos2x−sin2x)
=2cos2x [∵cos2A=cos2A−sin2A]