Differentiate the function given below w.r.t. x: y=(x+1x)3
⇒y=x3+1x3+3x+3x ⇒dydx=d(x3)dx+d(x−3)dx+d(3x)dx+d(3x−1)dx [∵d(f+g)dx=dfdx+dgdx] ⇒dydx=3x2−3x−4+3−3x−2 [∵d(xn)dx=nxn−1] dydx=3x2−3x4+3−3x2
Differentiate the function given below w.r.t. x: x4+x3+x2+1x
Differentiate the function given below w.r.t. x: 1ax2+bx+c
Differentiate the function given below w.r.t. x: (secx−1)(secx+1)
Differentiate the function given below w.r.t. x: (3x+5)(1+tanx)
Differentiate the function given below w.r.t. x: (2x−7)2(3x+5)3