Let θ=tan−12x1−x2
∴tanθ=2x1−x2
Substitute x=tanα
∴tanθ=2tanα1−tan2α
∴tanθ=tan2α
∴θ=2α (considering only primary values)
∴θ=2tan−1x
Differentiating wrt x, we get
∴dθdx=21+x2
Now, consider γ=cos−11−x21+x2
∴cosγ=1−x21+x2
Substitute x=tanβ
∴cosγ=1−tan2β1+tan2β
∴cosγ=1−sin2βcos2β1+sin2βcos2β
∴cosγ=cos2β−sin2βcos2βcos2β+sin2βcos2β
∴cosγ=cos2β1
(as cos2β+sin2β=1 and cos2β−sin2β=cos2β)
∴cosγ=cos2β
∴γ=2β (considering only primary values)
∴γ=2tan−1x
Differentiating wrt x, we get
∴dγdx=21+x2
Now,
d{tan−12x1−x2}d{cos−11−x21+x2}=dθdγ
=dθdx×dxdγ
=21+x2×1+x22
=1
This is the required solution.