Let y=(x+1x)x+x(1+1x)
Also, let u=(x+1x)x and v=x(1+1x)
∴y=u+v
⇒dydx=dudx+dvdx ...(1)
Then, u=(x+1x)x
⇒logu=log(x+1x)x
⇒logu=xlog(x+1x)
Differentiating both sides with respect to x, we obtain
1u.dudx=ddx(x)×log(x+1x)+x×ddx[log(x+1x)]
⇒1u.dudx=1×log(x+1x)+x×1(x+1x).ddx(x+1x)
⇒dudx=u⎡⎢
⎢⎣log(x+1x)+x(x+1x)×(1−1x2)⎤⎥
⎥⎦
⇒dudx=(x+1x)x⎡⎢
⎢⎣log(x+1x)+(x−1x)(x+1x)⎤⎥
⎥⎦
⇒dudx=(x+1x)x[log(x+1x)+x2−1x2+1]
⇒dudx=(x+1x)x[x2−1x2+1+log(x+1x)] ...(2)
v=x(1+1x)
⇒logv=log[x(1+1x)]
⇒logv=(1+1x)logx
Differentiating both sides with respect to x, we obtain
1v.dvdx=[ddx(1+1x)]×logx+(1+1x).ddxlogx
⇒1v.dvdx=[ddx(1+1x)]×logx+(1+1x).ddxlogx
⇒1v.dvdx=−logxx2+1x+1x2
⇒dvdx=v[−logx+x+1x2]
⇒dvdx=x(1+1x)[−x+1−logxx2] ...(3)
Therefore, from (1), (2) and (3), we obtain
⇒dydx=(x+1x)x[x2−1x2+1+log(x+1x)]+x(1+1x)[−x+1−logxx2]