wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function w.r.t. x.
(x+1x)x+x(1+1x)

Open in App
Solution

Let y=(x+1x)x+x(1+1x)
Also, let u=(x+1x)x and v=x(1+1x)
y=u+v
dydx=dudx+dvdx ...(1)
Then, u=(x+1x)x
logu=log(x+1x)x
logu=xlog(x+1x)
Differentiating both sides with respect to x, we obtain
1u.dudx=ddx(x)×log(x+1x)+x×ddx[log(x+1x)]
1u.dudx=1×log(x+1x)+x×1(x+1x).ddx(x+1x)
dudx=u⎢ ⎢log(x+1x)+x(x+1x)×(11x2)⎥ ⎥
dudx=(x+1x)x⎢ ⎢log(x+1x)+(x1x)(x+1x)⎥ ⎥
dudx=(x+1x)x[log(x+1x)+x21x2+1]
dudx=(x+1x)x[x21x2+1+log(x+1x)] ...(2)
v=x(1+1x)
logv=log[x(1+1x)]
logv=(1+1x)logx
Differentiating both sides with respect to x, we obtain
1v.dvdx=[ddx(1+1x)]×logx+(1+1x).ddxlogx
1v.dvdx=[ddx(1+1x)]×logx+(1+1x).ddxlogx
1v.dvdx=logxx2+1x+1x2
dvdx=v[logx+x+1x2]
dvdx=x(1+1x)[x+1logxx2] ...(3)
Therefore, from (1), (2) and (3), we obtain
dydx=(x+1x)x[x21x2+1+log(x+1x)]+x(1+1x)[x+1logxx2]

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon