CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function w.r.t. x.
(xcosx)x+(xsinx)1x

Open in App
Solution

Let y=(xcosx)x+(xsinx)1x
Also, let u=(xcosx)x and v=(xsinx)1x
y=u+v
dydx=dudx+dvdx ...(1)
u=(xcosx)x
logu=log(xcosx)x
logu=xlog(xcosx)
logu=x[logx+logcosx]
logu=xlogx+xlogcosx
Differentiating both sides with respect to x, we obtain
1ududx=ddx(xlogx)+ddx(xlogcosx)
dudx=u[(logx.ddx(x)+x.ddx(logx))+(logcosx.ddx(x)+x.ddx(logcosx))]
dudx=(xcosx)x[(logx.1+x.1x)+(logcosx.1+x.1cosx.ddx(cosx))]
dudx=(xcosx)x[(logx+1)+(logcosx+xcosx.(sinx))]
dudx=(xcosx)x[(1+logx)+(logcosxxtanx)]
dudx=(xcosx)x[1xtanx+(logx+logcosx)]
dudx=(xcosx)x[1xtanx+log(xcosx)] ... (2)
v=(xsinx)1x
logv=log(xsinx)1x
logv=1xlog(xsinx)
logv=1x(logx+logsinx)
logv=1xlogx+1xlogsinx
Differentiating both sides with respect to x, we obtain
1vdvdx=ddx(1xlogx)+ddx[1xlog(sinx)]
1vdvdx=[logx.ddx(1x)+1x.ddx(logx)]+[log(sinx).ddx(1x)+1x.ddx(log(sinx))]
1vdvdx=[logx.(1x2)+1x.1x]+[log(sinx).(1x2)+1x.1sinx.ddx(sinx)]
1vdvdx=1x2(1logx)+[log(sinx)x2+1xsinx.cosx]
dvdx=(xsinx)1x[1logxx2+log(sinx)+xcotxx2]
dvdx=(xsinx)1x[1logxlog(sinx)+xcotxx2]
dvdx=(xsinx)1x[1log(xsinx)+xcotxx2] ...(3)
From (1), (2) and (3), we obtain
dydx=(xcosx)x[1xtanx+log(xcosx)]+(xsinx)1x[xcotx+1log(xsinx)x2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon