Let y=(x+3)2.(x+4)3.(x+5)4
Taking logarithm on both the sides, we obtain
logy=log(x+3)2+log(x+4)3+log(x+5)4
⇒logy=2log(x+3)+3log(x+4)+4log(x+5)
Differentiating both sides with respect to x, we obtain
1ydydx=2.1x+3+3.1x+4+4.1x+5
⇒dydx=y[2x+3+3x+4+4x+5]
⇒dydx=(x+3)2.(x+4)3.(x+5)4.[2x+3+3x+4+4x+5]
⇒dydx=(x+3)2.(x+4)3.(x+5)4.[2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5)]
⇒dydx=(x+3)2.(x+4)3.(x+5)4.[2(x2+9x+20)+3(x2+8x+15)+4(x2+7x+12)]
∴dydx=(x+3)2.(x+4)3.(x+5)4.(9x2+70x+133)