Given:
f(x)=x+ex1+logx
f′(x)=ddx(x+ex1+logx)
Applying quotient rule
⎛⎝ddx(uv)=cdudx−udvdxv2⎞⎠ , we get
(1+logx)ddx(x+ex)−
⇒ f′(x)=(x+ex)ddx(1+logx)(1+logx)2
⇒ f′(x)=(1+logx)(1+ex)−(x+ex)1x(1+logx)2
⇒ f′(x)=x(1+logx)(1xe)−(x+ex)x(1+logx)2
x(1+logx+ex+exlogx)
⇒ f′(x)=−x−exx(1+logx)2
x+xlogx+xex+
⇒ f′(x)=xexlogx−x−exx(1+logx)2
⇒ f′(x)=xlogx.(1xe)−ex(1−x)x(1+logx)2
Therefore, the differentiation of the given
function is xlogx.(1+ex)−ex(1−x)x(1+logx)2