wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function with respect to x:
x+ex1+logx

Open in App
Solution

Given:
f(x)=x+ex1+logx

f(x)=ddx(x+ex1+logx)

Applying quotient rule

ddx(uv)=cdudxudvdxv2 , we get

(1+logx)ddx(x+ex)
f(x)=(x+ex)ddx(1+logx)(1+logx)2

f(x)=(1+logx)(1+ex)(x+ex)1x(1+logx)2

f(x)=x(1+logx)(1xe)(x+ex)x(1+logx)2

x(1+logx+ex+exlogx)
f(x)=xexx(1+logx)2

x+xlogx+xex+
f(x)=xexlogxxexx(1+logx)2

f(x)=xlogx.(1xe)ex(1x)x(1+logx)2

Therefore, the differentiation of the given
function is xlogx.(1+ex)ex(1x)x(1+logx)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon