Differentiate the given function w.r.t. x: cos(acosx+bsinx), for some constant a and b.
Open in App
Solution
Let y=cos(acosx+bsinx) By using chain rule, we obtain dydx=ddxcos(acosx+bsinx) ⇒dydx=−sin(acosx+bsinx).ddx(acosx+bsinx) =−sin(acosx+bsinx).[a(−sin)+bcosx] =(asinx−bcosx).sin(acosx+bsinx)