wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the given function w.r.t. x:
cot1[1+sinx+1sinx1+sinx1sinx], 0 < x <π2

Open in App
Solution

Let y=cot1[1+sinx+1sinx1+sinx1sinx] ...(i)

Then, 1+sinx+1sinx1+sinx1sinx

=(1+sinx+1sinx)2(1+sinx1sinx)(1+sinx+1sinx)
=(1+sinx)+(1sinx)+2(1sinx)(1+sinx)(1+sinx)(1sinx)
=2+21sin2x2sinx
=1+cosxsinx=2cos2x22sinx2cosx2=cotx2
Therefore equation (1) becomes,
y=cot1(cotx2)=x2
dydx=12ddx(x)=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon