Let y=xx2−3+(x−3)x2
Also, let u=xx2−3 and v=(x−3)x2
∴y=u+v
Differentiating both sides with respect to x, we obtain
dydx=dudx+dvdx .....(1)
u=xx2−3
∴logu=log(xx2−3)
⇒logu=(x2−3)logx
Differentiating with respect to x, we obtain
1ududx=logx.dudx=logx.ddx(x2−3)+(x2−3).ddx(logx)
⇒1ududx=logx.2x+(x2−3).1x
dudx=xx2−3[x2−3x+2xlogx]
Also,
v=(x−3)x2
∴logv=log(x−3)x2
⇒logv=x2log(x−3)
Differentiating both sides with respect to x, we obtain
1vdvdx=log(x−3).ddx(x2)+x2.ddx[log(x−3)]
⇒1vdvdx=log(x−3).2x+x2.1x−3.ddx(x−3)
⇒dvdx=v[2xlog(x−3)+x2x−3.1]
⇒dvdx=(x−3)x2[x2x−3+2xlog(x−3)]
Substituting the expressions of dudx and dvdx in equation (1), we obtain
dydx=xx2−3[x2−3x+2xlogx]+(x−3)x2[x2x−3+2xlog(x−3)]