Let y=xx+xa+ax+aa
Also let, xx=u,xa=v,ax=w, and aa=s
∴y=u+v+w+s
⇒dydx=dudx+dvdx+dwdx+dsdx .....(1)
u=xx
⇒logu=logxx
⇒logu=xlogx
Differentiating both sides with respect to x, we obtain
1ududx=logx.ddx(x)+x.ddx(logx)
⇒dudx=u[logx.1+x1x]
⇒dudx=xx[logx+1]=xx(1+logx) .....(2)
v=xa
∴dvdx=ddx(xa)
⇒dvdx=axa−1 .....(3)
w=ax
⇒logw=logax
⇒logw=xloga
Differentiating both sides with respect to x, we obtain
1w.dwdx=loga.ddx(x)
⇒dwdx=wloga
⇒dwdx=axloga .....(4)
s=aa
Since a is constant, aa is also a constant.
∴dsdx=0 .....(5)
From (1), (2), (3), (4) and (5) we obtain
dydx=xx(1+logx)+axa−1+axloga+0
=xx(1+logx)+axa−1+axloga