Differentiate the given functions w.r.t. x.
(x+1x)x+x(1+1x)
Let y = (x+1x)x+x(1+1x)
Again let u=(x+1x)x, v=x(1+1x)
∴ y = u + v
Differentiating w.r.t. x
⇒ dydx=dudx+dvdx............(i)
Now, u=(x+1x)x
Taking log on both sides
⇒ log u=log (x+1x)x ⇒ log u=x log (x+1x) [∴ log mn=n log m]
Differentiating w.r.t. x
⇒ 1ududx=xddxlog(1+1x)+log (x+1x)ddx(x) [Using chain rule]⇒ 1ududx=x×1(x+1x)[1−1x2]+log (x+1x)⇒ 1ududx=xx2+1[x2−1x2]+log (x+1x)⇒ 1ududx=[(x2−1)(x2+1)+log(x+1x)]⇒ dudx=u[(x2−1)(x2+1)+log(x+1x)]⇒ dudx=(x+1x)x[(x2−1)(x2+1)+log(x+1x)]
Now, v=x(1+1x)
Taking log on both sides,
⇒ log v=log x(1+1x) ⇒ log v=(1+1x)log x
Differentiating w.r.t., x,
⇒ 1vdvdx=(1+1x)ddx{log x}+log xddx(1+1x) (Using chain rule)⇒ 1vdvdx=(1+1x)×1x+log x[0−1x2]⇒ 1vdvdx=[x+1x2]−1x2 log x⇒ 1vdvdx=[x+1−log xx2]⇒ dvdx=v[x+1−log xx2]⇒ dvdx=x(1+1x)[x+1−log xx2]Putting the values of dudx and dvdx in Eq. (i),∴ dydx=(1+1x)x[(x2−1)(x2+1)+log(x+1x)]+x(1+1x)[x+1−log xx2]