Differentiate the given functions w.r.t. x.
(log x)cos x
Ley y = (log x)cos x
Taking log on both sides, we get
log y=log {(log x)cos x}
⇒logy=cosx×log(logx) [∵ log mn=n log m]
Differentiating both sides w.r.t. x, we get
1ydydx=ddx{cos x log(log x)}
⇒ 1ydydx=cos x1log x.1x+log(log x)(−sin x)
(Using product ruleddx(u. v)=udvdx+vdudx)
⇒ dydx=y{cos xx log x−sin xlog (log x)}
=(log x)cos x{cos xx log x−sin x log (log x)}
Note: In a log function, if base is not given then, it is consider as e, then ddx(log x)=1x. If base is other than e. Then, ddx(loga x)=logae.1x