Differentiate the given functions w.r.t. x.
(log x)x+xlog x
Let y = (log x)x+xlog x
Let u=(log x)x, v=xlog x
∴ y = u + v
Differentiating w.r.t. x, dydx=dudx+dvdx ......(i)
Now, u=(log x)x
Taking log on both sides,
⇒ log u=log (log x)x ⇒ log u=x log (log x)
Differentiating w.r.t., x we get
⇒ 1ududx=xddx log (log x)+log (log x) ddx(x) (Using chain rule)⇒ 1ududx=xlog x×1x+log (log x) ⇒ dudx=u[1log x+log(log x)]⇒ dudx=(log x)x[1log x+log(log x)]
Again, v=xlog x
Taking log on both sides,
⇒ log v=log xlog x ⇒ log v=(log x)(log x) ⇒ log v=(log x)2
Differentiaing w.r.t. x, we get
⇒ 1vdvdx=2 log xddx(log x)=2 log x×1x (∴ ddx[f(x)]2=2f(x)ddxf(x))⇒ dvdx=v[2 log xx]⇒ dvdx=xlog x[2 log xx]Now, putting the values of dudx and dvdx in Ea. (i), we getdydx=(log x)x[1log x+log(log x)]+xlog x[2 log xx]dydx=(log x)x−1[1+log x log (log x)]+2xlog x−1.log x