Differentiate the given functions w.r.t. x.
(x+3)2(x+4)3(x+5)4
Ley y = (x+3)2(x+4)3(x+5)4
Taking log on both sides, we get
log y=log {(x+3)2(x+4)3(x+5)4}or log y=2 log (x+3)+3 log (x+4)+4 log (x+5) (∴ log (lmn)=log l+log m+log n)
Differentiating both sides w.r.t. x, we get
ddx(log y)=2ddxlog(x+3)+3ddxlog(x+4)+4ddxlog(x+5)1ydydx=2(1x+3)(1=0)+3(1x+4)(1+0)+4(1x+5)(1+0)⇒ dydx=y{(2x+3)+(3x+4)+(4x+5)}⇒ dydx=(x+3)2(x+4)3(x+5)4{(2x+3)+(3x+4)+(4x+5)}=(x+3)2(x+4)3(x+5)4{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5)}=(x+3)(x+4)2(x+5)4[2(x2+9x+20)+3(x2+8x+15)+4(x2+7x+12)]=(x+3)(x+4)2(x+5)4(9x2+70x+133)