Differentiate the given functions w.r.t. x.
xx−2sin x.
Ley y = xx−2sin x
Let u=xx and v=2sin x
∴ y = u - v
Differentiating both sides w.r.t. x, we get
dydx=dudx−dvdx
Now, u=xx
Taking log on both sides,
⇒ log u=log xx⇒ log u=x log x⇒ 1ududx=xddxlog x+log xddxx (Differentiate w.r.t, x)⇒ 1ududx=x×1x+log x⇒1ududx=1+log x,dudx=xx(1+log x) v=2sin xTaking log on both sides,⇒ log v=log(2sin x)⇒ log v=(sin x)log 2⇒ 1vdvdx=cos x(log 2) (Differentiate w.r.t. x)⇒ dvdx=v[cos x log 2]=2sin x[cos x log 2]Now, putting the values of dudx and dvdx in Eq. (i),dydx=xx[1+log x]−2[sin x][cos x log 2]