Differentiate the given functions w.r.t. x.
xx cos x+x2+1x2−1.
Let y=xx cos x+x2+1x2−1
Let u=xx cos x,v=x2+1x2−1
y = u + v
Differentiating w.r.t. x,
dydx=dudx+dvdx
Now, u=xx cos x
Taking log on both sides, log u = x cos x log x
Differentiating w.r.t. x,
ddx(log u)=x cos xddx(log x)+log xddx(x cos x)=x cos x×1x+log x[x ddxcos x+cos x ddx(x)]⇒ 1ududx=x cos x×1x=log x[(−x sin x)+cos x]⇒ dudx=u[cos x−x sin x log x+cos x.log x]⇒ dudx=xx cos x[cos x−x sin x log x+cos x.log x]Again, v=x2+1x2−1Taking log on both sides,log v=log (x2+1)−log(x2−1)Differentiating w.r.t. x,⇒ ddxlog v=ddxlog(x2+1)−ddxlog(x2−1)⇒ 1vdvdx=1(x2+1)ddx(x2+1)−1(x2−1)ddx(x2−1)⇒ 1vdvdx=2x(x2+1)−2x(x2−1)=2x[(x2−1)−(x2+1)(x21)(x2−1)]⇒ dvdx=v[−4xx4−1]=x2+1x2−1[−4xx4−1]Now, putting the values of dudx and dvdx in Eq. (i)∴ dydx=xx cos x[cos x−x sin x log x +cos x.log x]+x2+1x2−1[−4xx4−1] =xx cos x[cos x.(1+log x)−x sin x log x]−4x(x2−1)2