wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate using chain rule:y=[cos2(tan1(sin(cot1x)))]

Open in App
Solution

Let y=cos2(tan1(sin(cot1x)))
Let u=cot1xdudx=11+x2
Let v=sinudvdu=cosu
y=cos2(tan1v)
Let w=tan1vdwdv=11+v2
y=cos2wdydw=2coswsinw
Using chain rule of differentiation, we have
dydx=dydw×dwdv×dvdu×dudx
=2coswsinw×11+v2×cosu×11+x2
=2cos(tan1v)sin(tan1v)×11+v2×cosu×11+x2 where w=tan1v
=2cos(tan1(sinu))sin(tan1(sinu))×11+sin2u×cosu×11+x2 where v=sinu
=2cos(tan1(sin(cot1x)))sin(tan1(sin(cot1x)))×11+sin2(cot1x)×cos(cot1x)×11+x2 where u=cot1x
=2cos(tan1(sin(cot1x)))sin(tan1(sin(cot1x)))cos(cot1x)(1+sin2(cot1x))(1+x2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon