Differentiating with respect to x
y=tan(tanx−1√2tanx)⇒dydx=ddx(tan(tanx−1√2tanx))=sec2(tanx−1√2tanx)ddx(tan(tanx−1√2tanx))=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜⎝√2tanxddx(tanx−1)−(tanx−1)ddx(√2tanx)(√2tanx)2⎞⎟ ⎟ ⎟⎠=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜ ⎜⎝√2tanx(sec2x)−(tanx−1)12√2tanxddx(2tanx)√2tanx⎞⎟ ⎟ ⎟ ⎟⎠=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜ ⎜⎝√2tanx(sec2x)−(tanx−1)2.sec2x2√2tanx√2tanx⎞⎟ ⎟ ⎟ ⎟⎠=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜ ⎜ ⎜⎝2tanxsec2x−(tanx−1)sec2x(√2tanx)32⎞⎟ ⎟ ⎟ ⎟ ⎟⎠=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜ ⎜ ⎜⎝sec2x(2tanx−tanx+1)(√2tanx)32⎞⎟ ⎟ ⎟ ⎟ ⎟⎠=sec2(tanx−1√2tanx)⎛⎜ ⎜ ⎜ ⎜ ⎜⎝sec2x(1+tanx)(√2tanx)32⎞⎟ ⎟ ⎟ ⎟ ⎟⎠