wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate w.r.t x,
y= tan{ tanx12 tanx}

Open in App
Solution

Differentiating with respect to x

y=tan(tanx12tanx)dydx=ddx(tan(tanx12tanx))=sec2(tanx12tanx)ddx(tan(tanx12tanx))=sec2(tanx12tanx)⎜ ⎜ ⎜2tanxddx(tanx1)(tanx1)ddx(2tanx)(2tanx)2⎟ ⎟ ⎟=sec2(tanx12tanx)⎜ ⎜ ⎜ ⎜2tanx(sec2x)(tanx1)122tanxddx(2tanx)2tanx⎟ ⎟ ⎟ ⎟=sec2(tanx12tanx)⎜ ⎜ ⎜ ⎜2tanx(sec2x)(tanx1)2.sec2x22tanx2tanx⎟ ⎟ ⎟ ⎟=sec2(tanx12tanx)⎜ ⎜ ⎜ ⎜ ⎜2tanxsec2x(tanx1)sec2x(2tanx)32⎟ ⎟ ⎟ ⎟ ⎟=sec2(tanx12tanx)⎜ ⎜ ⎜ ⎜ ⎜sec2x(2tanxtanx+1)(2tanx)32⎟ ⎟ ⎟ ⎟ ⎟=sec2(tanx12tanx)⎜ ⎜ ⎜ ⎜ ⎜sec2x(1+tanx)(2tanx)32⎟ ⎟ ⎟ ⎟ ⎟


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon