wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate w.r. to x
sin1(acosx+bsinxa2+b2)

Open in App
Solution

Let y=sin1(acosx+bsinxa2+b2)
siny=acosx+bsinxa2+b2
cosydydx=1a2+b2ddx(acosx+bsinx)
cosydydx=1a2+b2(asinx+bcosx)
1sin2ydydx=asinx+bcosxa2+b2
 1(acosx+bsinxa2+b2)2dydx=asinx+bcosxa2+b2
dydx=asinx+bcosxa2+b2×1 1(acosx+bsinxa2+b2)2
dydx=asinx+bcosxa2+b2×a2+b2a2+b2a2cos2xb2sin2x2absinxcosx
dydx=asinx+bcosxa2+b2×a2+b2a2a2cos2x+b2b2sin2x2absinxcosx
dydx=asinx+bcosxa2a2cos2x+b2b2sin2x2absinxcosx
dydx=asinx+bcosxa2(1cos2x)+b2(1sin2x)2absinxcosx
dydx=asinx+bcosxa2sin2x+b2cos2x2absinxcosx
dydx=asinx+bcosx(asinxbcosx)2
dydx=asinx+bcosxasinxbcosx
dydx=(asinxbcosx)asinxbcosx
dydx=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon